• <nav id="ikqyo"><strong id="ikqyo"></strong></nav><menu id="ikqyo"></menu>
  • <nav id="ikqyo"></nav>
  • <nav id="ikqyo"><nav id="ikqyo"></nav></nav>
    <nav id="ikqyo"><nav id="ikqyo"></nav></nav>


    The development of the climate-change-mitigation technology has received widespread attention from both academic and policy studies. Nevertheless, very few studies have explained how and why economies contribute differently to global development. This paper decomposed the development of the global climate-change-mitigation technology, proxied by patent-based indicators, from 1996 to 2015 into several predefined factors. The results show that the worldwide surge of climate-change-mitigation-technology patents from 1996 to 2011 is driven by increased concentration on green invention, improved research intensity, and enlarged economic scale, while the falling of patent counts from 2011 to 2015 is predominantly due to less concentration on green invention. Among different climate-change-mitigation technologies, the type-specific development is attributed to different dominant factors, and the resulting priority change can reflect the shift of both global research and development (R&D) resource and market demand. Regarding regional contributions, the resulting economy-specific contributions to each driving factor can be used to design the policies to promote the development of the global climate-change-mitigation technology.

    Liying SONG ,   Jun JING   et al.
    Solar energy is one of the most promising forms of renewable energy for solving the energy crisis and environmental problems. Dust deposition on photovoltaic mirrors has a serious negative impact on the photoelectric conversion efficiency of solar power stations. In this paper, the influence mechanism of the dynamic and static liquid bridge forces on particle deposition behaviors on solar photovoltaic mirrors is investigated. In addition, the expression and physical meaning of the particle critical separation velocity are proposed. The research results show that the static liquid bridge force can be the primary deposition force causing dust particles to adhere to photovoltaic mirrors. However, the dynamic liquid bridge force can act as a resistance force for the particle motion process and even make dust particles roll along and finally stay on the mirror. The contact force is the primary separation force that causes dust particles to flow away from the mirror. Whether dust particles adhere to the mirror depends on the relative size of the deposition and separating forces. The particle critical separation velocity describes the relative size of the collision-rebound effect and mirror adhesion effect and is expressed in Eq. (16). These research findings can provide theoretical guidance for mirror cleaning methods in the operation process of photovoltaic mirrors.

    Xueqing LIU ,   Xiaodong ZHAO   et al.
    Low-carbon energy technology (LC) innovation contributes to both environmental protection and economic development. Using the panel data of 30 provinces/autonomous regions/municipalities in China from 1998 to 2017, this paper constructs a two-layer logarithmic mean Divisia index (LMDI) model to uncover the factors influencing the variation of the innovation of LC in China’s industrial sectors, including the alternative energy production technology (AEPT) and the energy conversation technology (ECT). The results show that China’s industrial LC patent applications rapidly increased after 2005 and AEPT patent applications outweighed ECT patent applications all the time with a gradually narrowing gap. Low-carbon degree played the dominant role in promoting the increase in China’s industrial LC patent applications, followed by the economic scale, R&D (research and development) efficiency, and R&D share. Economic structure contributed to the increases in LC patent applications in the central and the western regions, while led to the decreases in the eastern region, the north-eastern region, and Chinese mainland . Low-carbon degree and economic scale were two main contributors to the growths of both industrial AEPT patent applications and ECT patent applications in Chinese mainland and the four regions. Several policy recommendations are made to further promote industrial innovation in China.

    Xi ZHANG ,   Yong GENG   et al.
    Coal water slurry gasification is a main source of hydrogen in the developing hydrogen economy. Moreover, biomass and waste can be added, making gasification process greener. To expand the application of coal water slurry and gasification process, it is necessary to understand the micro-structure in this large particle suspension system. In this paper, the micro-structure in coal water slurry was studied by extended DLVO (eDLVO) theory and fractal dimension, which is used to explain the mechanism of stability in large particle suspension systems. The interaction between two coal particles was characterized from the interparticle potential and energy barrier based on the eDLVO theory. The rheology and stability between different types of coals are measured and explained by the aggregating structure and fractal dimension in coal water slurry. The results indicated that there would be an aggregating structure in high rank coals, due to the interparticle potential caused by the surface properties, but probably not in low rank coals. This aggregating structure can be described and characterized by fractal dimension. The aggregation of particles is the source of the stability for high rank coals, as the close-packed 3D network structure in large particle suspension can support coal particles from settling down. The results have demonstrated that the combination of the eDLVO theory and rheological measurement is an effective way to investigate the stability of large particle suspension systems.

    Qiang LI ,   Qian WANG   et al.

    Most Popular