• <nav id="ikqyo"><strong id="ikqyo"></strong></nav><menu id="ikqyo"></menu>
  • <nav id="ikqyo"></nav>
  • <nav id="ikqyo"><nav id="ikqyo"></nav></nav>
    <nav id="ikqyo"><nav id="ikqyo"></nav></nav>


    Psoraleae Fructus (PF) is a well-known traditional herbal medicine in China, and it is widely used for osteoporosis, vitiligo, and other diseases in clinical settings. However, liver injury caused by PF and its preparations has been frequently reported in recent years. Our previous studies have demonstrated that PF could cause idiosyncratic drug-induced liver injury (IDILI), but the mechanism underlying its hepatotoxicity remains unclear. This paper reports that bavachin isolated from PF enhances the specific stimuli-induced activation of the NLRP3 inflammasome and leads to hepatotoxicity. Bavachin boosts the secretion of IL-1β and caspase-1 caused by ATP or nigericin but not those induced by poly(I:C), monosodium urate crystal, or intracellular lipopolysaccharide. Bavachin does not affect AIM2 or NLRC4 inflammasome activation. Mechanistically, bavachin specifically increases the production of nigericin-induced mitochondrial reactive oxygen species among the most important upstream events in the activation of the NLRP3 inflammasome. Bavachin increases the levels of aspartate transaminase and alanine aminotransferase in serum and hepatocyte injury accompanied by the secretion of IL-1β via a mouse model of lipopolysaccharide-mediated susceptibility to IDILI. These results suggest that bavachin specifically enhances the ATP- or nigericin-induced activation of the NLRP3 inflammasome. Bavachin also potentially contributes to PF-induced idiosyncratic hepatotoxicity. Moreover, bavachin and PF should be evaded among patients with diseases linked to the ATP- or nigericin-mediated activation of the NLRP3 inflammasome, which may be a dangerous factor for liver injury.

    Nan Qin ,   Guang Xu   et al.
    Cardio-cerebrovascular disease (CCVD) is a major comorbidity of coronavirus disease 2019 (COVID-19). However, the clinical characteristics and outcomes remain unclear. In this study, 102 cases of COVID-19 from January 22, 2020 to March 26, 2020 in Xixi Hospital of Hangzhou were included. Twenty cases had pre-existing CCVD. Results showed that compared with non-CCVD patients, those with CCVD are more likely to develop severe disease (15% versus 1%), and the proportion of pneumonia severity index grade IV was significantly higher (25% versus 3.6%). Computed tomography images demonstrated that the proportion of multiple lobe lesion involvement was significantly higher in the CCVD group than in the non-CCVD group (90% versus 63.4%). Compared with non-CCVD group, the levels of C-reactive protein, fibrinogen, D-dimer, and serum amyloid-A were higher, whereas the total protein and arterial partial PaO were lower in the CCVD group. Although no statistical difference was observed in the outcomes between groups, CCVD patients received more intensive comprehensive treatment to improve COVID-19 symptoms compared with non-CCVD patients. Integrated Chinese and Western medicine treatments have certain advantages in controlling the severe conversion rate and mortality of COVID-19. In addition, given that COVID-19 patients are usually related to coagulation disorders and thrombosis risk, the application of Chinese medicine in promoting blood circulation and removing stasis should be strengthened.

    Yu Wang ,   Lan Li   et al.
    We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, =0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), ?46.39 (?86.83 to ?5.94) HU; =0.025) and day 14 (mean difference (95% CI), ?74.21 (?133.35 to ?15.08) HU; =0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.

    Li Ni ,   Zheng Wen   et al.
    The coronavirus disease 2019 (COVID-19) has caused global public health and economic crises. Thus, new therapeutic strategies and effective vaccines are urgently needed to cope with this severe pandemic. The development of a broadly neutralizing antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the attractive treatment strategies for COVID-19. Currently, the receptor-binding domain (RBD) of the spike (S) protein is the main target of neutralizing antibodies when SARS-CoV-2 enters human cells through an interaction between the S protein and the angiotensin-converting enzyme 2 expressed on various human cells. A single monoclonal antibody (mAb) treatment is prone to selective pressure due to increased possibility of targeted epitope mutation, leading to viral escape. In addition, the antibody-dependent enhancement effect is a potential risk of enhancing the viral infection. These risks can be reduced using multiple mAbs that nonoverlapping epitopes. Thus, a cocktail therapy combining two or more antibodies that recognize different regions of the viral surface may be the most effective therapeutic strategy.

    Rongtao Lai ,   Tianhui Zhou   et al.

    Most Popular